Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Huntingtons Dis ; 10(4): 455-458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34511507

RESUMEN

The R6/2 murine model of Huntington's disease (HD) is extensively used in HD research. The current study replicates and extends previous work assessing the impact of housing R6/2 mice with healthy wild-type (WT) littermates on disease progression. The current study extends the previous finding by including male cohorts and the use of a standard diet and water regimen, as opposed to the enhanced diet used in the previous study. This study found that the inclusion of healthy wild-type (WT) littermates, alone, improved survivabilty in R6/2 mice, but did not have a significant impact on weight loss.


Asunto(s)
Enfermedad de Huntington , Animales , Modelos Animales de Enfermedad , Vivienda , Enfermedad de Huntington/genética , Longevidad/genética , Masculino , Ratones , Ratones Transgénicos
2.
Autophagy ; 17(1): 1-382, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33634751

RESUMEN

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.


Asunto(s)
Autofagia , Animales , Autofagosomas , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Bioensayo/normas , Biomarcadores , Humanos , Lisosomas
3.
J Cell Mol Med ; 23(8): 5211-5224, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31162801

RESUMEN

Autophagy, including mitophagy, is critical for neuroprotection in traumatic brain injury (TBI). Transplantation of mesenchymal stem cells (MSCs) provides neuroprotection and induces autophagy by increasing anti-inflammatory cytokines, such as interleukin-10 (IL-10). To evaluate these effects of IL10 that are released by MSCs, we genetically engineered MSCs to overexpress IL10 and compared their effects to unaltered MSCs following transplantation near the site of induced TBIs in rats. Adult, male Sprague-Dawley rats were divided into four groups: Sham + vehicle, TBI + vehicle, TBI + MSCs-IL-10 and TBI + MSCs-GFP. Thirty-six hours post-TBI, the first two groups received vehicle (Hanks balance salt solution), whereas last two groups were transplanted with MSCs-IL-10 or MSCs-GFP. Three weeks after transplantation, biomarkers for neurodegenerative changes, autophagy, mitophagy, cell death and survival markers were measured. We observed a significant increase in the number of dead cells in the cortex and hippocampus in TBI rats, whereas transplantation of MSCs-IL-10 significantly reduced their numbers in comparison to MSCs alone. MSCs-IL-10 rats had increased autophagy, mitophagy and cell survival markers, along with decreased markers for cell death and neuroinflammation. These results suggest that transplantation of MSCs-IL-10 may be an effective strategy to protect against TBI-induced neuronal damage.


Asunto(s)
Autofagia/genética , Lesiones Traumáticas del Encéfalo/terapia , Interleucina-10/genética , Trasplante de Células Madre Mesenquimatosas , Animales , Biomarcadores de Tumor/genética , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/fisiopatología , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Inflamación/genética , Inflamación/patología , Células Madre Mesenquimatosas/metabolismo , Mitofagia/genética , Neuronas/metabolismo , Neuronas/patología , Neuroprotección/genética , Ratas
4.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669284

RESUMEN

Autophagy and the (PI3K-Akt/mTOR) signaling pathway play significant roles in glioblastoma multiforme (GBM) cell death and survival. Curcumin (Cur) has been reported to prevent several cancers, including GBM. However, the poor solubility and limited bioavailability of natural Cur limits its application in preventing GBM growth. Previously, we have shown the greater apoptotic and anti-carcinogenic effects of solid lipid Cur particles (SLCP) than natural Cur in cultured GBM cells. Here, we compared the autophagic responses on cultured U-87MG, GL261, F98, C6-glioma, and N2a cells after treatment with Cur or SLCP (25 µM for 24 h). Different autophagy, mitophagy, and chaperone-mediated autophagy (CMA) markers, along with the PI3K-AKkt/mTOR signaling pathway, and the number of autophagy vacuoles were investigated after treatment with Cur and or SLCP. We observed increased levels of autophagy and decreased levels of mitophagy markers, along with inhibition of the PI3K-Akt/mTOR pathway after treatments with Cur or SLCP. Cell survival markers were downregulated, and cell death markers were upregulated after these treatments. We found greater effects in the case of SCLP-treated cells in comparison to Cur. Given that fewer effects were observed on C-6 glioma and N2a cells. Our results suggest that SLCP could be a safe and effective means of therapeutically modulating autophagy in GBM cells.


Asunto(s)
Autofagia/efectos de los fármacos , Curcumina/química , Curcumina/farmacología , Lípidos/química , Nanopartículas/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Biomarcadores Ambientales , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Mitofagia/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
5.
Front Surg ; 6: 73, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998742

RESUMEN

Complete spinal cord injury is a devastating occurrence afflicting millions of people worldwide with no available treatment for functional motor recovery. In this report, we describe a procedure in which we used parts of a device available for chronic pain treatment to provide a neuromodulation of motor nerve roots in a case with complete motor and sensory paraplegia. By using a retrograde trans-foraminal approach to implant electrodes close to L2-S1 motor nerve roots bilaterally, we were able to stimulate those nerves and induce precise movements at the joints of lower extremity in a T5 complete spinal cord injury case. We believe that our approach shows potential of the device as a rehabilitation system with the possibility of a parallel electric circuitry that can bridge a damaged spinal cord.

6.
Front Neurosci ; 11: 628, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209158

RESUMEN

Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by neuronal loss and motor dysfunction. Although there is no effective treatment, stem cell transplantation offers a promising therapeutic strategy, but the safety and efficacy of this approach needs to be optimized. The purpose of this study was to test the potential of intra-striatal transplantation of induced pluripotent stem cell-derived neural stem cells (iPS-NSCs) for treating HD. For this purpose, we developed mouse adenovirus-generated iPSCs, differentiated them into neural stem cells in vitro, labeled them with Hoechst, and transplanted them bilaterally into striata of 10-month old wild type (WT) and HD YAC128 mice. We assessed the efficiency of these transplanted iPS-NSCs to reduce motor deficits in YAC128 mice by testing them on an accelerating rotarod task at 1 day prior to transplantation, and then weekly for 10 weeks. Our results showed an amelioration of locomotor deficits in YAC128 mice that received iPS-NSC transplantations. Following testing, the mice were sacrificed, and their brains were analyzed using immunohistochemistry and Western blot (WB). The results from our histological examinations revealed no signs of tumors and evidence that many iPS-NSCs survived and differentiated into region-specific neurons (medium spiny neurons) in both WT and HD mice, as confirmed by co-labeling of Hoechst-labeled transplanted cells with NeuN and DARPP-32. Also, counts of Hoechst-labeled cells revealed that a higher proportion were co-labeled with DARPP-32 and NeuN in HD-, compared to WT- mice, suggesting a dissimilar differentiation pattern in HD mice. Whereas significant decreases were found in counts of NeuN- and DARPP-32-labeled cells, and for neuronal density measures in striata of HD vehicle controls, such decrements were not observed in the iPS-NSCs-transplanted-HD mice. WB analysis showed increase of BDNF and TrkB levels in striata of transplanted HD mice compared to HD vehicle controls. Collectively, our data suggest that iPS-NSCs may provide an effective option for neuronal replacement therapy in HD.

7.
Int J Mol Sci ; 18(3)2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28335421

RESUMEN

Drug delivery into the central nervous system (CNS) is challenging due to the blood-brain barrier (BBB) and drug delivery into the brain overcoming the BBB can be achieved using nanoparticles such as dendrimers. The conventional cationic dendrimers used are highly toxic. Therefore, the present study investigates the role of novel mixed surface dendrimers, which have potentially less toxicity and can cross the BBB when administered through the carotid artery in mice. In vitro experiments investigated the uptake of amine dendrimers (G1-NH2 and G4-NH2) and novel dendrimers (G1-90/10 and G4-90/10) by primary cortical cultures. In vivo experiments involved transplantation of G4-90/10 into mice through (1) invasive intracranial injections into the striatum; and (2) less invasive carotid injections. The animals were sacrificed 24-h and 1-week post-transplantations and their brains were analyzed. In vivo experiments proved that the G4-90/10 can cross the BBB when injected through the carotid artery and localize within neurons and glial cells. The dendrimers were found to migrate through the corpus callosum 1-week post intracranial injection. Immunohistochemistry showed that the migrating cells are the dendrimer-infected glial cells. Overall, our results suggest that poly-amidoamine (PAMAM) dendrimers may be used as a minimally invasive means to deliver biomolecules for treating neurological diseases or disorders.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Dendrímeros/farmacocinética , Animales , Arterias Carótidas/metabolismo , Células Cultivadas , Dendrímeros/administración & dosificación , Dendrímeros/síntesis química , Inyecciones Intraarteriales , Ratones , Ratones Endogámicos C57BL
8.
Oxid Med Cell Longev ; 2017: 9656719, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29359011

RESUMEN

Despite recent advancements in cancer therapies, glioblastoma multiforme (GBM) remains largely incurable. Curcumin (Cur), a natural polyphenol, has potent anticancer effects against several malignancies, including metastatic brain tumors. However, its limited bioavailability reduces its efficiency for treating GBM. Recently, we have shown that solid lipid Cur particles (SLCPs) have greater bioavailability and brain tissue penetration. The present study compares the efficiency of cell death by Cur and/or SLCPs in cultured GBM cells derived from human (U-87MG) and mouse (GL261) tissues. Several cell viability and cell death assays and marker proteins (MTT assay, annexin-V staining, TUNEL staining, comet assay, DNA gel electrophoresis, and Western blot) were investigated following the treatment of Cur and/or SLCP (25 µM) for 24-72 h. Relative to Cur, the use of SLCP increased cell death and DNA fragmentation, produced longer DNA tails, and induced more fragmented nuclear lobes. In addition, cultured GBM cells had increased levels of caspase-3, Bax, and p53, with decreases in Bcl2, c-Myc, and both total Akt, as well as phosphorylated Akt, when SLCP, rather Cur, was used. Our in vitro work suggests that the use of SLCP may be a promising strategy for reversing or preventing GBM growth, as compared to using Cur.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/patología , Muerte Celular , Curcumina/farmacología , Fragmentación del ADN , Glioblastoma/patología , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...